A Simple and Unusual Bijection for Dyck Paths and Its Consequences Sergi Elizalde and Emeric Deutsch

نویسنده

  • SERGI ELIZALDE
چکیده

In this paper we introduce a new bijection from the set of Dyck paths to itself. This bijection has the property that it maps statistics that appeared recently in the study of pattern-avoiding permutations into classical statistics on Dyck paths, whose distribution is easy to obtain. We also present a generalization of the bijection, as well as several applications of it to enumeration problems of statistics in restricted permutations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted 2-Motzkin Paths

This paper is motivated by two problems recently proposed by Coker on combinatorial identities related to the Narayana polynomials and the Catalan numbers. We find that a bijection of Chen, Deutsch and Elizalde can be used to provide combinatorial interpretations of the identities of Coker when it is applied to weighted plane trees. For the sake of presentation of our combinatorial corresponden...

متن کامل

Old and young leaves on plane trees

A leaf of a plane tree is called an old leaf if it is the leftmost child of its parent, and it is called a young leaf otherwise. In this paper we enumerate plane trees with a given number of old leaves and young leaves. The formula is obtained combinatorially by presenting two bijections between plane trees and 2-Motzkin paths which map young leaves to red horizontal steps, and old leaves to up...

متن کامل

An involution on lattice paths between two boundaries

We give an involution on the set of lattice paths from (0, 0) to (a, b) with steps N = (0, 1) and E = (1, 0) that lie between two boundaries T and B, which proves that the statistics ‘number of E steps shared with T ’ and ‘number of E steps shared with B’ have a symmetric joint distribution on this set. This generalizes a result of Deutsch for the case of Dyck paths.

متن کامل

A bijection between 2-triangulations and pairs of non-crossing Dyck paths

A k-triangulation of a convex polygon is a maximal set of diagonals so that no k + 1 of them mutually cross in their interiors. We present a bijection between 2-triangulations of a convex n-gon and pairs of non-crossing Dyck paths of length 2(n−4). This gives a bijective proof of a recent result of Jonsson for the case k = 2. We obtain the bijection by constructing isomorphic generating trees f...

متن کامل

An involution on Dyck paths and its consequences

An involution is introduced in the set of all Dyck paths of semilength n from which one re-obtains easily the equidistribution of the parameters 'number of valleys' and 'number of doublerises' and also the equidistribution of the parameters 'height of the first peak' and 'number of returns'. (~) 1999 Elsevier Science B.V. All rights reserved AMS classification: 05A15

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008